Question:

A copper ball is heated to $ 100{}^\circ C $ . It cools to $ 80{}^\circ C $ in 5 minutes and to $ 65{}^\circ C $ in 10 minutes. The temperature of the surrounding is

Updated On: Sep 3, 2024
  • $ 13{}^\circ C $
  • $ 15{}^\circ C $
  • $ 18{}^\circ C $
  • $ 20{}^\circ C $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

: Let the temperature of surrounding be $ \theta {}^\circ C $ $ \therefore $ In first case, $ \frac{{{\theta }_{1}}-{{\theta }_{2}}}{t}=K\left( \frac{{{\theta }_{1}}+{{\theta }_{2}}}{2}-\theta \right) $ Or $ \frac{(100-80)}{5}=K\left( \frac{100+80}{2}-\theta \right) $ or $ 4=K(90-\theta ) $ ............... (i) In second case, temperature cools from $ 80{}^\circ C $ to $ 65{}^\circ C $ in $ (10-5)=5 $ minutes. $ \therefore $ $ \frac{80-65}{5}=K\left( \frac{80+65}{2}-\theta \right) $ or $ 3=K(72.5-\theta ) $ ............... (ii) or $ \frac{4}{3}=\frac{90-\theta }{72.5-\theta } $ or $ 270-3\theta =290-4\theta $ or $ \theta =290-270~~or\text{ }\theta =20{}^\circ C $ .
Was this answer helpful?
2
0

Top Questions on Newtons Law of Cooling

View More Questions

Concepts Used:

Newton’s Law of Cooling

Newton’s law of cooling states that the rate of heat loss from a body is directly proportional to the difference in temperature between the body and its surroundings. 

Derivation of Newton’s Law of Cooling

Let a body of mass m, with specific heat capacity s, is at temperature T2 and T1 is the temperature of the surroundings. 

If the temperature falls by a small amount dT2 in time dt, then the amount of heat lost is,

dQ = ms dT2

The rate of loss of heat is given by,

dQ/dt = ms (dT2/dt)                                                                                                                                                                              ……..(2)

Compare the equations (1) and (2) as,

– ms (dT2/dt) = k (T2 – T1)

Rearrange the above equation as:

dT2/(T2–T1) = – (k / ms) dt

dT2 /(T2 – T1) = – Kdt 

where K = k/m s

Integrating the above expression as,

loge (T2 – T1) = – K t + c

or 

T2 = T1 + C’ e–Kt

where C’ = ec