Step 1: The focal length of a lens in different media is given by:
\[
\frac{1}{f} = (\mu - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)
\]
In air:
\[
f = 24 \, \text{cm}, \quad \mu_{\text{air}} = 1.5
\]
In water:
\[
\mu_{\text{water}} = 1.33
\]
Step 2: Using the lens maker's formula, the focal length in water \( f' \) is related to the focal length in air \( f \) by the refractive index ratio:
\[
\frac{1}{f'} = \left( \frac{\mu_{\text{water}} - 1}{\mu_{\text{air}} - 1} \right) \cdot \frac{1}{f}
\]
Substitute the values:
\[
\frac{1}{f'} = \left( \frac{1.33 - 1}{1.5 - 1} \right) \cdot \frac{1}{24}
\]
\[
\frac{1}{f'} = \frac{0.33}{0.5} \cdot \frac{1}{24}
\]
\[
f' = \frac{96}{1} = 96 \, \text{cm}
\]
Thus, the focal length changes to 96 cm.