We know the formula for the focal length of the combination of two lenses in contact:
\[
\frac{1}{f_{\text{combination}}} = \frac{1}{f_1} + \frac{1}{f_2}
\]
where:
- \( f_1 \) is the focal length of the first lens (concave lens, \( f_1 = -18 \, \text{cm} \)),
- \( f_2 \) is the focal length of the second lens (convex lens, \( f_2 = +12 \, \text{cm} \)).
Substituting the values:
\[
\frac{1}{f_{\text{combination}}} = \frac{1}{-18} + \frac{1}{12}
\]
Let's calculate this:
First, find the common denominator:
\[
\frac{1}{f_{\text{combination}}} = \frac{-1}{18} + \frac{1}{12} = \frac{-2}{36} + \frac{3}{36} = \frac{1}{36}
\]
Therefore:
\[
f_{\text{combination}} = 36 \, \text{cm}
\]
Thus, the focal length of the combination is 36 cm.