Step 1: Use Faraday's law of electromagnetic induction.
Induced emf:
\[
\mathcal{E} = N \cdot \frac{d\Phi_B}{dt} = N \cdot \frac{d(B \cdot A)}{dt}
\]
Step 2: Insert given values.
\[
N = 45, \, r = 4\, \text{cm} = 0.04\, \text{m}, \, A = \pi r^2 = \pi (0.04)^2 = 5.0265 \times 10^{-3} \, \text{m}^2
\]
\[
\frac{dB}{dt} = \frac{0.70 - 0}{220} = 3.18 \times 10^{-3} \, \text{T/s}
\]
Step 3: Calculate emf.
\[
\mathcal{E} = 45 \cdot 5.0265 \times 10^{-3} \cdot 3.18 \times 10^{-3} \approx 0.000717 \, \text{V} = 0.717 \, \text{mV} \approx 0.72 \, \text{mV}
\]
Step 4: Select the correct option.
The induced emf is approximately 0.72 mV, which matches option (3).