To analyze the given problem, we use Faraday's Law of Induction and Lenz's Law. The setup involves a circular coil placed near a current-carrying conductor, both lying on the plane of the paper. The induced current in the loop is clockwise.
The current in the wire is time-dependent and downward.
Final Answer: (A): time-dependent and downward
In this scenario, the loop is positioned to the right of the current-carrying wire, even though it might seem as if it's on the left side. This is because, when you move in the direction of the current, the loop is situated to the right.
Now, as the current diminishes, the induced current within the loop is in a clockwise direction (S), as illustrated in the diagram.
Correct Option: (A): time-dependent and downward
A conducting square loop initially lies in the $ XZ $ plane with its lower edge hinged along the $ X $-axis. Only in the region $ y \geq 0 $, there is a time dependent magnetic field pointing along the $ Z $-direction, $ \vec{B}(t) = B_0 (\cos \omega t) \hat{k} $, where $ B_0 $ is a constant. The magnetic field is zero everywhere else. At time $ t = 0 $, the loop starts rotating with constant angular speed $ \omega $ about the $ X $ axis in the clockwise direction as viewed from the $ +X $ axis (as shown in the figure). Ignoring self-inductance of the loop and gravity, which of the following plots correctly represents the induced e.m.f. ($ V $) in the loop as a function of time:
A conducting square loop of side $ L $, mass $ M $, and resistance $ R $ is moving in the $ XY $ plane with its edges parallel to the $ X $ and $ Y $ axes. The region $ y \geq 0 $ has a uniform magnetic field, $ \vec{B} = B_0 \hat{k} $. The magnetic field is zero everywhere else. At time $ t = 0 $, the loop starts to enter the magnetic field with an initial velocity $ v_0 \hat{j} \, \text{m/s} $, as shown in the figure. Considering the quantity $ K = \frac{B_0^2 L^2}{RM} $ in appropriate units, ignoring self-inductance of the loop and gravity, which of the following statements is/are correct:
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where