Equation of circle passing origin and cutting axes at \(A(a,0)\), \(B(0,b)\):
\[
\frac{x}{a} + \frac{y}{b} = 1.
\]
Center of circle: \(\left(\frac{a}{2}, \frac{b}{2}\right)\).
Since line \(AB\) passes through \((x_1,y_1)\),
\[
\frac{x_1}{a} + \frac{y_1}{b} = 1.
\]
Substitute \(a = 2h, b=2k\):
\[
\frac{x_1}{2h} + \frac{y_1}{2k} = 1 \implies \frac{x_1}{h} + \frac{y_1}{k} = 2.
\]
Hence locus of center \((h,k)\) is
\[
\frac{x_1}{x} + \frac{y_1}{y} = 2.
\]