Let the centre of the circle be $(h, k).$
Since the centre lies on the line $y = x - 1$
$\therefore k-h-1\,...\left(i\right)$
Since the circle passes through the point $(7, 3)$, therefore, the distance of the centre from this point is the radius of the circle.
$\therefore 3=\sqrt{\left(h-7\right)^{2}+\left(k-3\right)^{2}}$
$\Rightarrow 3=\sqrt{\left(h-7\right)^{2}+\left(h-1-3\right)^{2}}\,\left[using \left(i\right)\right]$
$\Rightarrow h = 7$ or $h = 4$
For $h = 7$, we get $k = 6$ and for $h = 4$, we get $k = 3$
Hence, the circles which satisfy the given conditions are:
$\left(x-7\right)^{2}+\left(y-6\right)^{2}=9$
or $x^{2}+y^{2}-14x+12y+76=0$
and $\left(x-4\right)^{2}+\left(y-3\right)^{2}=9$ or
$x^{2}+y^{2}-8x-6y+16=0$