In ∆OAB,
AB = OA = OB = radius
∠∆OAB is an equilateral triangle.
Therefore, each interior angle of this triangle will be of 60°.
∠AOB = 60°
∠ACB=\(\frac{1}{2}\)∠AOB=\(\frac{1}{2}\)(60°)=30°
In cyclic quadrilateral ACBD,
∠ACB + ∠ADB = 180° (Opposite angle in cyclic quadrilateral)
∠ADB = 180° − 30° = 150°
Therefore, angle subtended by this chord at a point on the major arc and the minor arc are 30° and 150° respectively.
In Fig. 9.23, A,B and C are three points on a circle with centre O such that ∠ BOC = 30° and ∠ AOB = 60°. If D is a point on the circle other than the arc ABC, find ∠ADC.
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.
In Fig, ∠ ABC = 69°, ∠ ACB = 31°, find ∠ BDC.
Use these adverbs to fill in the blanks in the sentences below.
awfully sorrowfully completely loftily carefully differently quickly nonchalantly
(i) The report must be read ________ so that performance can be improved.
(ii) At the interview, Sameer answered our questions _________, shrugging his shoulders.
(iii) We all behave _________ when we are tired or hungry.
(iv) The teacher shook her head ________ when Ravi lied to her.
(v) I ________ forgot about it.
(vi) When I complimented Revathi on her success, she just smiled ________ and turned away.
(vii) The President of the Company is ________ busy and will not be able to meet you.
(viii) I finished my work ________ so that I could go out to play