Step 1: Understanding the force on a charged particle in a magnetic field.
The Lorentz force is given by:
\[
\mathbf{F} = q (\mathbf{v} \times \mathbf{B})
\]
Since force is also related to acceleration:
\[
m\mathbf{a} = q (\mathbf{v} \times \mathbf{B})
\]
Thus,
\[
\mathbf{a} = \frac{q}{m} (\mathbf{v} \times \mathbf{B})
\]
Step 2: Computing the cross product \( \mathbf{v} \times \mathbf{B} \).
Let \( \mathbf{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k} \) and \( \mathbf{B} = 2\hat{i} + 3\hat{j} \), then:
\[
\mathbf{v} \times \mathbf{B} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
v_x & v_y & v_z \\
2 & 3 & 0
\end{vmatrix}
\]
Expanding the determinant:
\[
\mathbf{v} \times \mathbf{B} =
\hat{i} (0 v_y - 3 v_z) - \hat{j} (0 v_x - 2 v_z) + \hat{k} (v_x 3 - v_y 2)
\]
\[
= (-3 v_z) \hat{i} + (2 v_z) \hat{j} + (3 v_x - 2 v_y) \hat{k}
\]
Since \( \mathbf{a} = \frac{q}{m} (\mathbf{v} \times \mathbf{B}) \), equating components:
\[
\alpha = -3 v_z \frac{q}{m}, \quad -4 = 2 v_z \frac{q}{m}
\]
Solving for \( v_z \):
\[
v_z = -\frac{4}{2} \frac{m}{q} = -2 \frac{m}{q}
\]
Substituting into \( \alpha = -3 v_z \frac{q}{m} \):
\[
\alpha = -3 \times (-2) = 6
\]
Final Answer:
\[
\boxed{6}
\]