Let the initial speed of the car be \(u\).
The car is brought to a stop, so its final speed \(v = 0\).
Distance covered \(s = 200\) m.
Time taken \(t = 10\) s.
We can use the equation of motion: \(s = \left(\frac{u+v}{2}\right)t\), which is valid for constant acceleration (deceleration here).
Substitute the given values:
\(200 = \left(\frac{u+0}{2}\right) \times 10\)
\(200 = \frac{u}{2} \times 10\)
\(200 = 5u\)
\(u = \frac{200}{5} = 40 \text{ ms}^{-1}\).
The initial speed of the car is \(40 \text{ ms}^{-1}\).
This matches option (d).
We can also find the acceleration (deceleration) \(a\):
Using \(v = u+at \Rightarrow 0 = u + a(10) \Rightarrow u = -10a\).
Using \(s = ut + \frac{1}{2}at^2 \Rightarrow 200 = u(10) + \frac{1}{2}a(10)^2 = 10u + 50a\).
Substitute \(u=-10a\): \(200 = 10(-10a) + 50a = -100a + 50a = -50a\).
\(a = \frac{200}{-50} = -4 \text{ ms}^{-2}\) (deceleration).
Then \(u = -10a = -10(-4) = 40 \text{ ms}^{-1}\).
\[ \boxed{40 \text{ ms}^{-1}} \]