The capacitance without the dielectric is:
\[C = \frac{A \epsilon_0}{d}.\]
With the dielectric inserted:
\[C = \frac{A \epsilon_0}{0.2 + \frac{d}{k}}.\]
Equating the capacitances:
\[\frac{A \epsilon_0}{0.6} = \frac{A \epsilon_0}{0.2 + \frac{0.6}{k}}.\]
Cancel \(A \epsilon_0\):
\[0.6 = 0.2 + \frac{0.6}{k}.\]
Rearranging:
\[0.6 - 0.2 = \frac{0.6}{k} \implies 0.4 = \frac{0.6}{k}.\]
Solving for \(k\):
\[k = \frac{0.6}{0.4} = \frac{3}{2} = 1.50.\]
Thus, the dielectric constant of the slab is:
\[k = 1.50.\]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: