The capacitance without the dielectric is:
\[C = \frac{A \epsilon_0}{d}.\]
With the dielectric inserted:
\[C = \frac{A \epsilon_0}{0.2 + \frac{d}{k}}.\]
Equating the capacitances:
\[\frac{A \epsilon_0}{0.6} = \frac{A \epsilon_0}{0.2 + \frac{0.6}{k}}.\]
Cancel \(A \epsilon_0\):
\[0.6 = 0.2 + \frac{0.6}{k}.\]
Rearranging:
\[0.6 - 0.2 = \frac{0.6}{k} \implies 0.4 = \frac{0.6}{k}.\]
Solving for \(k\):
\[k = \frac{0.6}{0.4} = \frac{3}{2} = 1.50.\]
Thus, the dielectric constant of the slab is:
\[k = 1.50.\]
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: