1. Convert Initial Velocity to m/s:
The initial velocity \( u = 72 \, \text{km/h} \) can be converted to m/s:
\[ u = 72 \times \frac{1000}{3600} = 20 \, \text{m/s}. \]
2. Use Equation of Motion to Find Retardation:
Using \( v = u + at \) with final velocity \( v = 0 \), time \( t = 4 \, \text{s} \):
\[ 0 = 20 + a \times 4. \] Solving for \( a \):
\[ a = -5 \, \text{m/s}^2. \]
3. Calculate Distance Using \( v^2 - u^2 = 2as \):
Substitute values:
\[ 0^2 - 20^2 = 2 \times (-5) \times s. \] Simplifying:
\[ s = 40 \, \text{m}. \]
Answer: 40 m
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
