1. Convert Initial Velocity to m/s:
The initial velocity \( u = 72 \, \text{km/h} \) can be converted to m/s:
\[ u = 72 \times \frac{1000}{3600} = 20 \, \text{m/s}. \]
2. Use Equation of Motion to Find Retardation:
Using \( v = u + at \) with final velocity \( v = 0 \), time \( t = 4 \, \text{s} \):
\[ 0 = 20 + a \times 4. \] Solving for \( a \):
\[ a = -5 \, \text{m/s}^2. \]
3. Calculate Distance Using \( v^2 - u^2 = 2as \):
Substitute values:
\[ 0^2 - 20^2 = 2 \times (-5) \times s. \] Simplifying:
\[ s = 40 \, \text{m}. \]
Answer: 40 m
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).