Given scale:
\[
1 : 12500
\]
This means 1 cm on the map represents 12,500 cm in reality.
Since this is an area problem, the scale factor must be squared:
\[
(\text{Actual area}) = (\text{Map area}) \times (12500)^2
\]
Map area:
\[
A_{\text{map}} = 96\ \text{cm}^2
\]
So,
\[
A_{\text{actual}} = 96 \times 12500^2
\]
\[
12500^2 = 156{,}250{,}000
\]
\[
A_{\text{actual}} = 96 \times 156{,}250{,}000
= 15{,}000{,}000{,}000\ \text{cm}^2
\]
Convert to square meters:
\[
1\ \text{m}^2 = 10,000\ \text{cm}^2
\]
\[
A_{\text{actual}} = \frac{15{,}000{,}000{,}000}{10,000}
= 1{,}500{,}000\ \text{m}^2
\]
Convert to hectares:
\[
1\ \text{hectare} = 10{,}000\ \text{m}^2
\]
\[
A_{\text{actual}} = \frac{1{,}500{,}000}{10{,}000}
= 150\ \text{hectares}
\]
Thus, the required actual area is:
\[
\boxed{150}
\]