Step 1: Given:
- Initial height from Earth’s surface = \( R \)
- Radius of Earth = \( R \)
- So, initial distance from Earth’s center = \( 2R \)
- Final distance from Earth’s center (on the surface) = \( R \)
- Initial velocity = 0 (body starts from rest)
Step 2: Use conservation of mechanical energy:
Initial total energy = Final total energy
\( \Rightarrow \frac{-GMm}{2R} + 0 = \frac{-GMm}{R} + \frac{1}{2}mv^2 \)
Step 3: Rearranging terms:
\( \frac{-GMm}{2R} = \frac{-GMm}{R} + \frac{1}{2}mv^2 \)
Bring all potential terms to one side:
\( \frac{-GMm}{2R} + \frac{GMm}{R} = \frac{1}{2}mv^2 \)
\( \frac{GMm}{2R} = \frac{1}{2}mv^2 \)
Step 4: Cancel \( m \) and simplify:
\( \frac{GM}{2R} = \frac{1}{2}v^2 \Rightarrow v^2 = \frac{GM}{R} \)
Step 5: Use \( g = \frac{GM}{R^2} \Rightarrow GM = gR^2 \)
Substitute into the equation:
\( v^2 = \frac{gR^2}{R} = gR \)
So, \( v = \sqrt{gR} \)
Final Answer: \( \sqrt{gR} \)