Given: - Mass of the body: \( m = 4 \, \text{kg} \) - Forces acting on the body:
\[ \vec{F_1} = 5\hat{i} + 8\hat{j} + 7\hat{k} \] \[ \vec{F_2} = 3\hat{i} - 4\hat{j} - 3\hat{k} \]
The net force acting on the body is given by the vector sum of \(\vec{F_1}\) and \(\vec{F_2}\):
\[ \vec{F_{\text{net}}} = \vec{F_1} + \vec{F_2} \]
Substituting the given values:
\[ \vec{F_{\text{net}}} = (5\hat{i} + 8\hat{j} + 7\hat{k}) + (3\hat{i} - 4\hat{j} - 3\hat{k}) \]
Combining like terms:
\[ \vec{F_{\text{net}}} = (5 + 3)\hat{i} + (8 - 4)\hat{j} + (7 - 3)\hat{k} \] \[ \vec{F_{\text{net}}} = 8\hat{i} + 4\hat{j} + 4\hat{k} \]
The acceleration \(\vec{a}\) is given by Newton’s second law:
\[ \vec{a} = \frac{\vec{F_{\text{net}}}}{m} \]
Substituting the values:
\[ \vec{a} = \frac{1}{4} (8\hat{i} + 4\hat{j} + 4\hat{k}) \] \[ \vec{a} = 2\hat{i} + \hat{j} + \hat{k} \]
The acceleration acting on the body is \( 2\hat{i} + \hat{j} + \hat{k} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: