The total height \(h = 125\) m and acceleration due to gravity \(g = 10\) m/s\(^2\).
Using the formula for the distance fallen in the last second \(h = \frac{1}{2}g(t-1)^2 - \frac{1}{2}gt^2\):
\[ t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 125}{10}} = 5 \text{ seconds} \]
Distance fallen in the last second:
\[ h = \frac{1}{2}g(5-1)^2 - \frac{1}{2}g(5)^2 = 45 \text{ m} \]
Thus, \(x = \frac{45}{125} \times 100 = 36\%\).