- Calculate the initial and final kinetic energies:
\[
KE_1 = \frac{1}{2} m (6)^2 = 18m \, \text{J}, \quad KE_2 = \frac{1}{2} m (4)^2 = 8m \, \text{J}
\]
- Work done by the retarding force:
\[
W = \int_{1.5}^{2.5} -25x \, dx = -\frac{25}{2} [(2.5)^2 - (1.5)^2] = -50 \, \text{J}
\]
- Change in kinetic energy \( \Delta KE = KE_2 - KE_1 = 8m - 18m = -10m \, \text{J} \)
- Equate the work done to the change in kinetic energy:
\[
-10m = -50 \Rightarrow m = 5 \, \text{kg}
\]