Step 1:
The rate of heat emission from a black body is proportional to the fourth power of its temperature:
\[
P \propto T^4
\]
Step 2:
Let the initial temperature be \( T_1 = 125 ^\circ C = 125 + 273 = 398 \, K \), and the final temperature be \( T_2 = 398 + 398 = 796 \, K \).
Step 3:
Using the Stefan-Boltzmann law:
\[
\frac{P_2}{P_1} = \left( \frac{T_2}{T_1} \right)^4
\]
\[
\frac{P_2}{32} = \left( \frac{796}{398} \right)^4
\]
\[
\frac{P_2}{32} = 2^4 = 16
\]
\[
P_2 = 32 \times 16 = 512 \, \text{W m$^-2$}
\]