Given: - A big drop is formed by combining 1000 small droplets.
Since the droplets coalesce to form one big drop, the total volume remains constant. Let \( r \) be the radius of each small droplet and \( R \) be the radius of the big drop.
The volume of one small droplet is:
\[ V_{\text{small}} = \frac{4}{3} \pi r^3 \]
The total volume of 1000 small droplets is:
\[ V_{\text{total}} = 1000 \times \frac{4}{3} \pi r^3 = \frac{4000}{3} \pi r^3 \]
The volume of the big drop is:
\[ V_{\text{big}} = \frac{4}{3} \pi R^3 \]
Equating the total volumes:
\[ \frac{4000}{3} \pi r^3 = \frac{4}{3} \pi R^3 \]
Simplifying:
\[ R^3 = 1000r^3 \]
Taking the cube root on both sides:
\[ R = 10r \]
The surface area of one small droplet is:
\[ A_{\text{small}} = 4 \pi r^2 \]
The total surface area of 1000 small droplets is:
\[ A_{\text{total}} = 1000 \times 4 \pi r^2 = 4000 \pi r^2 \]
The surface area of the big drop is:
\[ A_{\text{big}} = 4 \pi R^2 = 4 \pi (10r)^2 = 4 \pi \times 100r^2 = 400 \pi r^2 \]
Surface energy is directly proportional to the surface area. Let \( E_{\text{small}} \) and \( E_{\text{big}} \) be the surface energies of the small droplets and the big drop, respectively. The ratio of the surface energies is:
\[ \frac{E_{\text{big}}}{E_{\text{total}}} = \frac{A_{\text{big}}}{A_{\text{total}}} = \frac{400 \pi r^2}{4000 \pi r^2} = \frac{1}{10} \]
The surface energy will become \( \frac{1}{10} \)th of its original value.
Consider a water tank shown in the figure. It has one wall at \(x = L\) and can be taken to be very wide in the z direction. When filled with a liquid of surface tension \(S\) and density \( \rho \), the liquid surface makes angle \( \theta_0 \) (\( \theta_0 < < 1 \)) with the x-axis at \(x = L\). If \(y(x)\) is the height of the surface then the equation for \(y(x)\) is: (take \(g\) as the acceleration due to gravity)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: