Step 1: Use lens maker’s formula.
\[
\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)
\]
For a biconvex lens, \(R_1 = +20\,\text{cm}\), \(R_2 = -20\,\text{cm}\).
Step 2: Substitute values.
\[
\frac{1}{f} = (1.5 - 1)\left(\frac{1}{20} - \left(-\frac{1}{20}\right)\right)
= 0.5 \times \frac{2}{20} = \frac{1}{20}
\]
\[
f_{\text{lens}} = 20\,\text{cm}
\]
Step 3: Use mirror formula.
For a concave mirror,
\[
f = \frac{R}{2}
\Rightarrow R = 2f = 40\,\text{cm}
\]
By sign convention for concave mirror, \(R\) is negative.
Step 4: Final result.
\[
R = -40\,\text{cm}
\]