Concept:
For thin lenses in contact, the equivalent focal length is:
\[
\frac{1}{F}=\frac{1}{f_1}+\frac{1}{f_2}
\]
Linear magnification for a lens system is:
\[
m=\frac{v}{u}
\]
When lenses are separated by a small distance, the image formed by the first lens acts as the object for the second lens.
Step 1: Lenses in contact.
Given:
\[
f_1=+5\,\text{cm},\qquad f_2=-4\,\text{cm}
\]
Equivalent focal length:
\[
\frac{1}{F}=\frac{1}{5}-\frac{1}{4}=\frac{4-5}{20}=-\frac{1}{20}
\Rightarrow F=-20\,\text{cm}
\]
Object distance:
\[
u=-10\,\text{cm}
\]
Using lens formula:
\[
\frac{1}{v}-\frac{1}{u}=\frac{1}{F}
\]
\[
\frac{1}{v}+\frac{1}{10}=-\frac{1}{20}
\Rightarrow \frac{1}{v}=-\frac{3}{20}
\Rightarrow v=-\frac{20}{3}\,\text{cm}
\]
Thus,
\[
m_1=\frac{v}{u}=\frac{-20/3}{-10}=\frac{2}{3}
\]
Step 2: Concave lens moved \(1\,\text{cm}\) away.
Image formed by the convex lens first:
\[
\frac{1}{v_1}-\frac{1}{u}=\frac{1}{f_1}
\Rightarrow \frac{1}{v_1}+\frac{1}{10}=\frac{1}{5}
\Rightarrow v_1=10\,\text{cm}
\]
This image is \(1\,\text{cm}\) to the left of the concave lens, hence for concave lens:
\[
u_2=-9\,\text{cm}
\]
Using lens formula for concave lens:
\[
\frac{1}{v_2}-\frac{1}{u_2}=\frac{1}{f_2}
\]
\[
\frac{1}{v_2}+\frac{1}{9}=-\frac{1}{4}
\Rightarrow \frac{1}{v_2}=-\frac{13}{36}
\Rightarrow v_2=-\frac{36}{13}\,\text{cm}
\]
Total magnification:
\[
m_2=\left(\frac{v_1}{u}\right)\left(\frac{v_2}{u_2}\right)
=\left(\frac{10}{10}\right)\left(\frac{36/13}{9}\right)
=\frac{4}{13}
\]
Step 3: Find the ratio.
\[
\frac{m_1}{m_2}=\frac{2/3}{4/13}=\frac{5}{6}
\]
\[
\boxed{\dfrac{m_1}{m_2}=\dfrac{5}{6}}
\]