Step 1: Using the Formula for Radius of Curvature.
The formula for the radius of curvature \(R\) of a beam is given by:
\[
R = \frac{EI}{M}
\]
Where:
- \(E\) = Modulus of elasticity = \(2 \times 10^5 \, \text{N/mm}^2\)
- \(I\) = Moment of inertia = \(1 \times 10^8 \, \text{mm}^4\)
- \(M\) = Bending moment = 40 kN·m = \(40 \times 10^3 \, \text{N·m}\)
Step 2: Substituting the Values.
Substituting the given values into the formula:
\[
R = \frac{(2 \times 10^5) \times (1 \times 10^8)}{40 \times 10^3} = \frac{2 \times 10^{13}}{40 \times 10^3} = 5 \times 10^5 \, \text{mm} = 500 \, \text{m}
\]
Step 3: Conclusion.
Therefore, the radius of curvature is 500 m, making option (2) the correct answer.
Final Answer:
\[
\boxed{500 \, \text{m}}
\]