Step 1: Calculate the total number of balls
\[
4 \text{ (white)} + 5 \text{ (red)} + 6 \text{ (blue)} = 15 \text{ balls}.
\]
Step 2: Compute the total ways to choose 3 balls from 15
\[
\binom{15}{3} = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} = 455.
\]
Step 3: Compute the ways to choose 3 red balls from 5
\[
\binom{5}{3} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10.
\]
Step 4: Compute the probability of drawing 3 red balls
\[
\frac{\binom{5}{3}}{\binom{15}{3}} = \frac{10}{455} = \frac{2}{91}.
\]
Thus, the probability of drawing 3 red balls is \( \frac{2}{91} \).