180 seconds
Let A’s speed = \( v_A \) m/s, B’s speed = \( v_B \) m/s, A’s time = \( t_A \) seconds.
Case 1: B runs 950 m in \( t_A + 15 \) seconds:
\[ \frac{950}{v_B} = t_A + 15 \] Case 2: B runs 930 m in \( t_A + 10 \) seconds:
\[ \frac{930}{v_B} = t_A + 10 \] Divide equations:
\[ \frac{950}{930} = \frac{t_A + 15}{t_A + 10} \Rightarrow 950(t_A + 10) = 930(t_A + 15) \] \[ 950t_A + 9500 = 930t_A + 13950 \Rightarrow 20t_A = 4450 \Rightarrow t_A = 100 \] Thus, A takes 100 seconds.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: