We need to find A’s time to complete the task alone.
- Step 1: Define rates: A’s rate = \( a \), B’s = \( b \), C’s = \( c \).
- Step 2: Equations:
- \( a + b = \frac{1}{12} \)
- \( b + c = \frac{1}{15} \)
- \( a + c = \frac{1}{20} \)
- Step 3: Add equations:
\[
2(a + b + c) = \frac{1}{12} + \frac{1}{15} + \frac{1}{20} = \frac{5 + 4 + 3}{60} = \frac{1}{5}
\]
\[
a + b + c = \frac{1}{10}
\]
- Step 4: Find \( a \):
\[
a = \frac{1}{10} - \frac{1}{15} = \frac{3 - 2}{30} = \frac{1}{30}
\]
Time = \( \frac{1}{\frac{1}{30}} = 30 \) days.
- Step 5: Options:
- (b) 30: Correct.
Thus, the answer is b.