The intensity \( I \) of the wave is related to the maximum electric field \( E_{\text{max}} \) by the formula:
\[
I = \frac{1}{2} \varepsilon_0 c E_{\text{max}}^2
\]
Given the power of the laser beam, the intensity \( I \) is:
\[
I = \frac{P}{A} = \frac{30 \times 10^{-3} \text{ W}}{15 \times 10^{-6} \text{ m}^2} = 2 \text{ W/m}^2
\]
Substituting the intensity into the formula for \( E_{\text{max}} \):
\[
2 = \frac{1}{2} \times (9 \times 10^{-12}) \times (3 \times 10^8) \times E_{\text{max}}^2
\]
Solving for \( E_{\text{max}} \), we get:
\[
E_{\text{max}} = 1.22 \times 10^3 \text{ V/m} = 1.22 \text{ kV/m}
\]
Thus, the correct answer is (A).