1. **Analyze the Forces:**
For a body on an inclined plane with angle \( \theta = 45^\circ \):
- The component of gravitational force parallel to the incline is \( f_L = mg \sin \theta \).
- The normal force perpendicular to the incline is \( N = mg \cos \theta \).
2. **Apply the Condition for Motion:**
Since the brick just begins to slide, the frictional force \( f_L \) is equal to the maximum static friction force, \( \mu_s N \). Thus:
\[ mg \sin 45^\circ = \mu_s mg \cos 45^\circ. \]
Simplifying, we get:
\[ \mu_s = \tan 45^\circ = 1. \]
3. **Conclusion:**
Therefore, the coefficient of static friction \( \mu_s \) is 1.
Answer: 1
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).