The magnetic force $\vec{F}$ on a current-carrying wire is given by:
\[
\vec{F} = I (\vec{L} \times \vec{B}),
\]
where:
\begin{itemize}
\item $I = 1.0 \, \text{A}$ is the current,
\item $\vec{L} = (10 \, \text{cm}) \, \hat{j} = (0.1 \, \text{m}) \, \hat{j}$ is the length vector of the wire,
\item $\vec{B} = (5 \, \text{mT}) \, \hat{j} - (8 \, \text{mT}) \, \hat{k} = (5 \times 10^{-3}) \, \hat{j} - (8 \times 10^{-3}) \, \hat{k}$.
\end{itemize}
Step 1: Compute $\vec{L \times \vec{B}$:}
\[
\vec{L} \times \vec{B} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
0 & 0.1 & 0
0 & 5 \times 10^{-3} & -8 \times 10^{-3}
\end{vmatrix}.
\]
Expand the determinant:
\[
\vec{L} \times \vec{B} = \hat{i} \left( 0.1 \cdot (-8 \times 10^{-3}) - 0 \cdot (5 \times 10^{-3}) \right)
- \hat{j} \left( 0 \cdot (-8 \times 10^{-3}) - 0 \cdot 0 \right)
+ \hat{k} \left( 0 \cdot (5 \times 10^{-3}) - 0.1 \cdot 0 \right).
\]
Simplify:
\[
\vec{L} \times \vec{B} = \hat{i} \left( -0.8 \times 10^{-3} \right) + 0 + 0.
\]
Thus:
\[
\vec{L} \times \vec{B} = -(0.8 \times 10^{-3}) \, \hat{i}.
\]
Step 2: Calculate $\vec{F$:}
\[
\vec{F} = I (\vec{L} \times \vec{B}) = 1.0 \cdot -(0.8 \times 10^{-3}) \, \hat{i}.
\]
Simplify:
\[
\vec{F} = -0.8 \, \text{mN} \, \hat{i}.
\]
Thus, the force on the wire is:
\[
\boxed{-(0.8 \, \text{mN}) \, \hat{i}}.
\]