Step 1: The energy stored in a capacitor is given by:
\[
E = \frac{1}{2} C V^2
\]
The initial energy stored in the first capacitor is:
\[
E_{\text{initial}} = \frac{1}{2} \times 10 \, \mu \text{F} \times (100 \, \text{V})^2 = 0.5 \times 10^{-5} \times 10^4 = 5 \times 10^{-2} \, \text{J}
\]
After connecting the second capacitor, the total energy is shared, and the final energy is:
\[
E_{\text{final}} = \frac{1}{2} (10 + 30) \, \mu \text{F} \times \left( \frac{100}{2} \right)^2 = 0.5 \times 40 \times 10^{-6} \times 50^2 = 3.75 \times 10^{-2} \, \text{J}
\]
The electrostatic energy lost is:
\[
\Delta E = E_{\text{initial}} - E_{\text{final}} = 5 \times 10^{-2} - 3.75 \times 10^{-2} = 1.25 \times 10^{-2} \, \text{J}
\]
Thus, the energy lost by the first capacitor is \( \boxed{3.75 \times 10^{-2} \, \text{J}} \).
\bigskip