A 1.0 m long metallic rod is rotated with an angular frequency of 400 rad s-1 about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of 0.5 T parallel to the axis exists everywhere. Calculate the emf developed between the centre and the ring.
Length of the rod, I = 1 m
Angular frequency, \(\omega\) = 400 rad/s
Magnetic field strength, B = 0.5 T
One end of the rod has zero linear velocity, while the other end has a linear velocity of l\(\omega\).
Average linear velocity of the rod, \(v\) = \(\frac{l\omega+0}{2}\)= \(\frac{l\omega}{2}\)
Emf developed between the centre and the ring,
e = Blv=\(Bl\bigg(\frac{l\omega}{2}\bigg)\) = \(\frac{Bl^2\omega}{2}\)
= \(\frac{0.5\times(1)^2\times400}{2}\) =100 V
Hence, the emf developed between the centre and the ring is 100 V.
A circular coil of diameter 15 mm having 300 turns is placed in a magnetic field of 30 mT such that the plane of the coil is perpendicular to the direction of the magnetic field. The magnetic field is reduced uniformly to zero in 20 ms and again increased uniformly to 30 mT in 40 ms. If the EMFs induced in the two time intervals are \( e_1 \) and \( e_2 \) respectively, then the value of \( e_1 / e_2 \) is:
Conductor wire ABCDE with each arm 10 cm in length is placed in magnetic field of $\frac{1}{\sqrt{2}}$ Tesla, perpendicular to its plane. When conductor is pulled towards right with constant velocity of $10 \mathrm{~cm} / \mathrm{s}$, induced emf between points A and E is _______ mV.} 
“One of these days you’re going to talk yourself into a load of trouble,” her father said aggressively. What do you learn about Sophie’s father from these lines? (Going Places)
There are two laws, given by Faraday which explain the phenomena of electromagnetic induction:
Whenever a conductor is placed in a varying magnetic field, an emf is induced. If the conductor circuit is closed, a current is induced, known as the induced current.
The Emf induced inside a coil is equal to the rate of change of associated magnetic flux.
This law can be mathematically written as:
∈\(-N {\triangle \phi \over \triangle t}\)
