The atomic mass of \( ^{16}O \) is 16.0000 amu. Calculate its binding energy per nucleon. Mass of electron = 0.00055 amu, mass of proton = 1.007593 amu, mass of neutron = 1.008982 amu, and 1 amu = 931 MeV.
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $