Step 1: List the Given Data and Convert to SI Units:
\begin{itemize}
\item Energy released per fission, \(E = 200\) MeV.
\item Power of the reactor, \(P = 4\) MW.
\end{itemize}
We need to convert these to Joules and Watts (Joules/second) respectively.
\begin{itemize}
\item \(1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \implies 1 \text{ MeV} = 1.6 \times 10^{-13} \text{ J}\)
\[ E = 200 \times 10^6 \text{ eV} = 200 \times 1.6 \times 10^{-13} \text{ J} = 3.2 \times 10^{-11} \text{ J} \]
\item \(1 \text{ MW} = 10^6 \text{ W}\)
\[ P = 4 \times 10^6 \text{ W} = 4 \times 10^6 \text{ J/s} \]
\end{itemize}
Step 2: Relate Power, Energy, and Number of Fissions:
Power is the rate at which energy is produced. If \(N\) is the number of fissions occurring per second, then the total energy produced per second (Power) is the product of \(N\) and the energy per fission (\(E\)).
\[ P = N \times E \]
We need to find \(N\), the number of fissions per second.
\[ N = \frac{P}{E} \]
Step 3: Calculate the Value of N:
Substitute the values in SI units into the equation:
\[ N = \frac{4 \times 10^6 \text{ J/s}}{3.2 \times 10^{-11} \text{ J/fission}} \]
\[ N = \frac{4}{3.2} \times 10^{6 - (-11)} \text{ fissions/s} \]
\[ N = \frac{40}{32} \times 10^{17} \text{ fissions/s} = \frac{5}{4} \times 10^{17} \text{ fissions/s} \]
\[ N = 1.25 \times 10^{17} \text{ fissions/s} \]
Step 4: Final Answer:
The number of nuclei fissioned per second in the reactor is \(1.25 \times 10^{17}\).