The correct answer is:\(\frac{27}{2}\)
Let \(I=∫^4_1(x^2-x)dx\)
\(=∫^4_1x^2 dx-∫^4_1 xdx\)
Let \(I=I_1-I_2\),where,\(I_1=∫^4_1 x^2dx\) and \(I_2=∫^4_1 x\,dx...(1)\)
It is known that,
\(∫_a^b ƒ(x)dx=(b-a)\underset{n→∞}{lim}\frac{1}{n}[ƒ(a)+ƒ(a+h)+ƒ(a+(n-1)h)],where\, h=\frac{b-a}{n}\)
For \(I_1=∫^4_1 x^2dx,\)
\(a=1,b=4\),and \(ƒ(x)=x^2\)
\(∴h=\frac{4-1}{n}=\frac{3}{n}\)
\(I_1=∫^4_1 x^2dx=(4-1)\underset{n→∞}{lim}\frac{1}{n}[ƒ(1)+ƒ(1+h)+...+ƒ(1+(n-1)h)]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[1^2+(1+\frac{3}{n})^2+(1+2.\frac{3}{n})^2+...(1+(\frac{(n-1)3}{n})^2]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[1^2+[1^2+(\frac{3}{n})^2+2.\frac{3}{n}]+...+[1^2+(\frac{(n-1)3}{n})^2+\frac{2.(n-1).3}{n}]]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[(\underset{n times}{1^2+......+1^2})+(\frac{3}{n})^2[1^2+2^2+...+(n-1)^2]+2.\frac{3}{n}[1+2+...+(n-1)]]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[n+\frac{9}{n^2}[\frac{(n-1)(n)(2n-1)}{6}]+\frac{6}{n}[\frac{(n-1)(n)}{2}]]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[n+\frac{9n}{6}(1-\frac{1}{n})(2-\frac{1}{n})+\frac{6n-6}{2}]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[1+\frac{9}{6}(1-\frac{1}{n})(2-\frac{1}{n})+3-\frac{3}{n}]\)
\(=3[1+3+3]\)
\(=3[7]\)
\(I_1=21...(2)\)
For \(I_2=∫^4_1 x\,dx,\)
\(a=1,b=4,\)and \(ƒ(x)=x\)
⇒h=4-1/n=3/n
\(∴I_2=(4-1)\underset{n→∞}{lim}\frac{1}{n}[ƒ(1)+ƒ(1+h)+...ƒ(a+(n-1)h)]\)=3limn→∞1/n[[1+(1+h)+...+(1+(n-1)h)]
\(=3\underset{n→∞}{lim}\frac{1}{n}[1+(1+\frac{3}{n})+...+{1+(n-1)\frac{3}{n}}]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[(\underset{n times}{1+1+...+1})+\frac{3}{n}((1+2+...+(n-1))]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[n+\frac{3}{n}[\frac{(n-1)n}{2}]]\)
\(=3\underset{n→∞}{lim}\frac{1}{n}[1+\frac{3}{2}(1-\frac{1}{n})]\)
\(=3[1+\frac{3}{2}]\)
\(=3[\frac{5}{2}]\)
\(I_2=\frac{15}{2}...(3)\)
From equation,(2)and(3),we obtain
\(I=I_1+I_2=21-\frac{15}{2}=\frac{27}{2}\)