\(3\mathbf{\overline{i}} - 2\mathbf{\overline{j}} - \mathbf{\overline{k}}, -2\mathbf{\overline{i}} - \mathbf{\overline{j}} + 3\mathbf{\overline{k}}, -\mathbf{\overline{i}} + 3\mathbf{\overline{j}} - 2\mathbf{\overline{k}}\) are the position vectors of the vertices \( A \), \( B \), and \( C \) of a triangle \( ABC \)respectively. If \( H \) is its orthocenter, then find \( \overline{HA} + \overline{HB} + \overline{HC} \).
The general solution of the differential equation \[ (x + y)y \,dx + (y - x)x \,dy = 0 \] is:
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.