\(I=\)\(∫_0^{\frac \pi2}cos^2x\ dx\) ...(1)
⇒ \(I\) =\(∫_0^{\frac \pi2}cos^2(\frac \pi2-x)\ dx\) \((∫_0^aƒ(x)dx = ƒ(a-x)dx)\)
⇒\(I\) = \(∫_0^{\frac \pi2}sin^2x\ dx\) ...(2)
Adding (1) and (2), we obtain
\(2I\) =\(∫_0^{\frac \pi2}(sin ^2x+cos^2x)\ dx\)
⇒\(2I\) = \(∫_0^{\frac \pi2}1\ dx\)
⇒\(2I\) = \([x]_0^{\frac \pi2}\)
⇒\(2I\) = \(\frac \pi2\)
⇒\(I\) = \(\frac \pi4\)
What is the Planning Process?