2096 Olympics Host City Voting Puzzle
Cities in Contention:
Voting Rules:
Voting Table:
| Round | Total Votes | Maximum Votes (City) | Votes | Eliminated City | Votes |
|---|---|---|---|---|---|
| 1 | ? | London | 30 | New York | 12 |
| 2 | 83 | Paris | 32 | Beijing | 21 |
| 3 | 75 | ? | ? | — | — |
Additional Information:

Two players \( A \) and \( B \) are playing a game. Player \( A \) has two available actions \( a_1 \) and \( a_2 \). Player \( B \) has two available actions \( b_1 \) and \( b_2 \). The payoff matrix arising from their actions is presented below:

Let \( p \) be the probability that player \( A \) plays action \( a_1 \) in the mixed strategy Nash equilibrium of the game.
Then the value of p is (round off to one decimal place).
Three friends, P, Q, and R, are solving a puzzle with statements:
(i) If P is a knight, Q is a knave.
(ii) If Q is a knight, R is a spy.
(iii) If R is a knight, P is a knave. Knights always tell the truth, knaves always lie, and spies sometimes tell the truth. If each friend is either a knight, knave, or spy, who is the knight?
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: