According to Graham's Law of Diffusion, the rate of diffusion ($r$) of a gas is inversely proportional to the square root of its molar mass ($M$) or its vapor density ($VD$), assuming constant temperature and pressure.
$r \propto \frac{1}{\sqrt{M}}$ or $r \propto \frac{1}{\sqrt{VD}}$ (since Molar Mass $M = 2 \times VD$).
Rate of diffusion ($r$) can be expressed as Volume diffused ($V$) per unit time ($t$): $r = V/t$.
Given:
For gas A: Volume $V_A = 20$ mL, time $t_A = 1$ minute.
Rate of diffusion of A: $r_A = \frac{V_A}{t_A} = \frac{20 \text{ mL}}{1 \text{ min}} = 20 \text{ mL/min}$.
For gas B: Volume $V_B = 10$ mL, time $t_B = 1$ minute.
Rate of diffusion of B: $r_B = \frac{V_B}{t_B} = \frac{10 \text{ mL}}{1 \text{ min}} = 10 \text{ mL/min}$.
Let $VD_A$ be the vapor density of gas A and $VD_B$ be the vapor density of gas B.
From Graham's Law: $\frac{r_A}{r_B} = \sqrt{\frac{VD_B}{VD_A}}$.
We are given $VD_B = X$. We need to find $VD_A$.
Substitute the rates of diffusion:
$\frac{20 \text{ mL/min}}{10 \text{ mL/min}} = \sqrt{\frac{X}{VD_A}}$.
$\frac{20}{10} = 2$.
So, $2 = \sqrt{\frac{X}{VD_A}}$.
Square both sides:
$2^2 = \left(\sqrt{\frac{X}{VD_A}}\right)^2$.
$4 = \frac{X}{VD_A}$.
Now, solve for $VD_A$:
$VD_A = \frac{X}{4}$.
This matches option (c).
\[ \boxed{\frac{X}{4}} \]