We are given that \[ 2^x = (0.2)^y = 100 \] Let's first solve for \(x\) and \(y\). \[ 2^x = 100 \implies x \log 2 = \log 100 \implies x = \frac{\log 100}{\log 2} = \frac{2 \log 10}{\log 2} = \frac{2}{\log 2} \] Similarly, \[ (0.2)^y = 100 \implies y \log 0.2 = \log 100 \implies y = \frac{\log 100}{\log 0.2} = \frac{2 \log 10}{\log 0.2} = \frac{2}{\log 0.2} \] Now, using the relationship \(\log 0.2 = -\log 5\), \[ y = \frac{2}{-\log 5} = \frac{2}{\log 5} \] Thus, \[ \frac{1}{x} - \frac{1}{y} = \frac{1}{\frac{2}{\log 2}} - \frac{1}{\frac{2}{\log 5}} = \frac{\log 2}{2} - \frac{\log 5}{2} = \frac{\log 2 - \log 5}{2} = \frac{\log \frac{2}{5}}{2} \] Using the value \(\frac{2}{5} = 0.4\), we get: \[ \frac{\log \frac{2}{5}}{2} = \frac{1}{2} \]
The correct option is (B): \(\frac{1}{2}\)
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :