The derivative of \( 5^x \) w.r.t. \( e^x \) is: {5pt}
Show Hint
When differentiating exponential functions:
- Use \( a^x = e^{x \log a} \) for conversion.
- The derivative of \( a^x \) is \( a^x \cdot \log a \).
- When differentiating with respect to another function, apply the chain rule.
Step 1: Express the derivative of \( 5^x \).
The function \( 5^x \) can be written in exponential form as:
\[
5^x = e^{x \log 5}.
\]
Differentiating \( 5^x \) with respect to \( x \):
\[
\frac{d}{dx}(5^x) = \frac{d}{dx}(e^{x \log 5}) = e^{x \log 5} \cdot \log 5 = 5^x \cdot \log 5.
\]
Step 2: Express the derivative of \( e^x \).
The derivative of \( e^x \) with respect to \( x \) is:
\[
\frac{d}{dx}(e^x) = e^x.
\]
Step 3: Find the derivative of \( 5^x \) with respect to \( e^x \).
Using the chain rule:
\[
\frac{d}{d(e^x)}(5^x) = \frac{\frac{d}{dx}(5^x)}{\frac{d}{dx}(e^x)} = \frac{5^x \cdot \log 5}{e^x}.
\]
Step 4: Simplify the result.
Since \( 5^x = \left( \frac{5}{e} \right)^x \cdot e^x \), substituting this into the derivative gives:
\[
\frac{5^x \cdot \log 5}{e^x} = \left( \frac{5}{e} \right)^x \cdot \log 5.
\]
Thus, the final answer is:
\[
\left( \frac{5}{e} \right)^x \cdot \log 5.
\]
Was this answer helpful?
0
0
Top Questions on Absolute maxima and Absolute minima