Question:

The derivative of 5x 5^x w.r.t. ex e^x is: {5pt}

Show Hint

When differentiating exponential functions: - Use ax=exloga a^x = e^{x \log a} for conversion. - The derivative of ax a^x is axloga a^x \cdot \log a . - When differentiating with respect to another function, apply the chain rule.
Updated On: Jan 29, 2025
  • (5e)x1log5 \left( \frac{5}{e} \right)^x \frac{1}{\log 5}
  • (e5)x1log5 \left( \frac{e}{5} \right)^x \frac{1}{\log 5}
  • (5e)xlog5 \left( \frac{5}{e} \right)^x \log 5
  • (e5)xlog5 \left( \frac{e}{5} \right)^x \log 5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Express the derivative of 5x 5^x .
The function 5x 5^x can be written in exponential form as: 5x=exlog5. 5^x = e^{x \log 5}. Differentiating 5x 5^x with respect to x x : ddx(5x)=ddx(exlog5)=exlog5log5=5xlog5. \frac{d}{dx}(5^x) = \frac{d}{dx}(e^{x \log 5}) = e^{x \log 5} \cdot \log 5 = 5^x \cdot \log 5. Step 2: Express the derivative of ex e^x .
The derivative of ex e^x with respect to x x is: ddx(ex)=ex. \frac{d}{dx}(e^x) = e^x. Step 3: Find the derivative of 5x 5^x with respect to ex e^x .
Using the chain rule: dd(ex)(5x)=ddx(5x)ddx(ex)=5xlog5ex. \frac{d}{d(e^x)}(5^x) = \frac{\frac{d}{dx}(5^x)}{\frac{d}{dx}(e^x)} = \frac{5^x \cdot \log 5}{e^x}. Step 4: Simplify the result.
Since 5x=(5e)xex 5^x = \left( \frac{5}{e} \right)^x \cdot e^x , substituting this into the derivative gives: 5xlog5ex=(5e)xlog5. \frac{5^x \cdot \log 5}{e^x} = \left( \frac{5}{e} \right)^x \cdot \log 5. Thus, the final answer is: (5e)xlog5. \left( \frac{5}{e} \right)^x \cdot \log 5.
Was this answer helpful?
0
0

Top Questions on Absolute maxima and Absolute minima

View More Questions