Question:

\(\frac{2\,tan\,30^0}{1-tan^2\,30^0}=\)

Updated On: Apr 5, 2025
  • sin 60°
  • cos 60°
  • tan 60°
  • cot 60°
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Recall the double-angle identity for tangent.

The double-angle identity for tangent is:

\[ \tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta} \]

Here, \( \theta = 30^\circ \), so:

\[ \frac{2\tan 30^\circ}{1 - \tan^2 30^\circ} = \tan(2 \cdot 30^\circ) = \tan 60^\circ \]

Step 2: Simplify \( \tan 60^\circ \).

From trigonometric values, we know:

\[ \tan 60^\circ = \sqrt{3} \]

The expression simplifies to \( \tan 60^\circ \), which corresponds to option \( \mathbf{(3)} \).

Final Answer: The value of \( \frac{2\tan 30^\circ}{1 - \tan^2 30^\circ} \) is \( \mathbf{\tan 60^\circ} \), which corresponds to option \( \mathbf{(3)} \).

Was this answer helpful?
0
0