Step 1: Recall the double-angle identity for tangent.
The double-angle identity for tangent is:
\[ \tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta} \]
Here, \( \theta = 30^\circ \), so:
\[ \frac{2\tan 30^\circ}{1 - \tan^2 30^\circ} = \tan(2 \cdot 30^\circ) = \tan 60^\circ \]
Step 2: Simplify \( \tan 60^\circ \).
From trigonometric values, we know:
\[ \tan 60^\circ = \sqrt{3} \]
The expression simplifies to \( \tan 60^\circ \), which corresponds to option \( \mathbf{(3)} \).
Final Answer: The value of \( \frac{2\tan 30^\circ}{1 - \tan^2 30^\circ} \) is \( \mathbf{\tan 60^\circ} \), which corresponds to option \( \mathbf{(3)} \).
The given graph illustrates: