List-I shows four configurations, each consisting of a pair of ideal electric dipoles. Each dipole has a dipole moment of magnitude $ p $, oriented as marked by arrows in the figures. In all the configurations the dipoles are fixed such that they are at a distance $ 2r $ apart along the $ x $-direction. The midpoint of the line joining the two dipoles is $ X $. The possible resultant electric fields $ \vec{E} $ at $ X $ are given in List-II. Choose the option that describes the correct match between the entries in List-I to those in List-II.
Two co-axial conducting cylinders of same length $ \ell $ with radii $ \sqrt{2}R $ and $ 2R $ are kept, as shown in Fig. 1. The charge on the inner cylinder is $ Q $ and the outer cylinder is grounded. The annular region between the cylinders is filled with a material of dielectric constant $ \kappa = 5 $. Consider an imaginary plane of the same length $ \ell $ at a distance $ R $ from the common axis of the cylinders. This plane is parallel to the axis of the cylinders. Ignoring edge effects, the flux of the electric field through the plane is $ (\varepsilon_0 \text{ is the permittivity of free space}) $: