To solve the expression \(\sqrt{110.25} \times \sqrt{0.01} \div \sqrt{0.0025} - \sqrt{420.25}\), follow these steps:
First, calculate each square root:
- Find \(\sqrt{110.25}\): This is \(10.5\) because \(10.5 \times 10.5 = 110.25\).
- Find \(\sqrt{0.01}\): This equals \(0.1\) because \(0.1 \times 0.1 = 0.01\).
- Find \(\sqrt{0.0025}\): This equals \(0.05\) because \(0.05 \times 0.05 = 0.0025\).
- Find \(\sqrt{420.25}\): This is \(20.5\) because \(20.5 \times 20.5 = 420.25\).
Next, substitute these values back into the expression:
\((10.5 \times 0.1) \div 0.05 - 20.5\)
Calculate \(10.5 \times 0.1\):
\(10.5 \times 0.1 = 1.05\)
Proceed with the division:
\(1.05 \div 0.05 = 21\)
Finally, subtract:
\(21 - 20.5 = 0.5\)
Thus, the expression equals 0.50.