∴\(\frac {1}{(x^2+1)(x^2+4)}\) = \(\frac {Ax+B}{(x^2+1)}+\frac {Cx+D}{(x^2+4)}\)
\(⇒1 = (Ax+B)(x^2+4)+(Cx+D)(x^2+1)\)
\(⇒1 = Ax^3+4Ax+Bx^2+4B+Cx^3+Cx+Dx^2+D\)
Equating the coefficients of \(x^3,x^2,x,\) and constant term,we obtain
\(A+C=0\)
\(B+D=0\)
\(4A+C=0\)
\(4B+D=1\)
On solving these equations, we obtain
\(A=0,\ B=\frac 13,\ C=0,\ D=-\frac 13\)
From equation(1), we obtain
\(\frac {1}{(x^2+1)(x^2+4)}\) = \(\frac {1}{3(x^2+1)}-\frac {1}{3(x^2+4)}\)
\(∫\)\(\frac {1}{(x^2+1)(x^2+4)}\) = \(\frac 13∫\frac {1}{x^2+1}dx-\frac {1}3∫\frac {1}{x^2+4}dx\)
=\(\frac 13\tan^{-1}x-\frac 13.\frac 12tan^{-1}\frac x2+C\)
=\(\frac 13tan^{-1}x-\frac 16tan^{-1}\frac x2+C\)
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,