Multiply numerator and denominator by xn−1 and put xn = t
\(\frac {1}{x(x^n+1)}\)
Multiplying numerator and denominator by xn−1 , we obtain
\(\frac {1}{x(x^n+1)}\) = \(\frac {x^{n-1}}{x^{n-1}x(x^n+1)}\) = \(\frac {x^{n-1}}{x^n(x^n+1)}\)
\(Let \ x^n = t ⇒ x^{n-1}dx = dt\)
∴ \(∫\)\(\frac {1}{x(x^n+1)}\ dx\) = \(∫\)\(\frac {x^{n-1}}{x^n(x^n+1)}\) = \(\frac 1n ∫\frac {1}{t(t+1)}dt\)
Let \(\frac {1}{t(t+1)}\) = \(\frac {A}{t}+\frac {B}{(t+1)}\)
\(1 = A(1+t)+Bt\) ...(1)
\(Substituting\ t = 0,−1 \ in\ equation\ (1), we\ obtain\)
\(A = 1 \ and\ B = −1\)
∴ \(\frac {1}{t(t+1)}\) = \(\frac 1t-\frac {1}{(1+t)}\)
⇒ \(∫\)\(\frac {1}{x(x^n+1)}\ dx\) = \(\frac 1n\) \(∫\)\([\frac 1t-\frac {1}{(1+t)} ]\ dx\)
= \(\frac 1n\ [log|t|-log\ |t+1|]+C\)
= \(-\frac 1n[log|x^n|-log|x^n+1|]+C\)
= \(\frac 1n\ log\ |\frac {x^n}{x^n+1}|+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
