Multiply numerator and denominator by xn−1 and put xn = t
\(\frac {1}{x(x^n+1)}\)
Multiplying numerator and denominator by xn−1 , we obtain
\(\frac {1}{x(x^n+1)}\) = \(\frac {x^{n-1}}{x^{n-1}x(x^n+1)}\) = \(\frac {x^{n-1}}{x^n(x^n+1)}\)
\(Let \ x^n = t ⇒ x^{n-1}dx = dt\)
∴ \(∫\)\(\frac {1}{x(x^n+1)}\ dx\) = \(∫\)\(\frac {x^{n-1}}{x^n(x^n+1)}\) = \(\frac 1n ∫\frac {1}{t(t+1)}dt\)
Let \(\frac {1}{t(t+1)}\) = \(\frac {A}{t}+\frac {B}{(t+1)}\)
\(1 = A(1+t)+Bt\) ...(1)
\(Substituting\ t = 0,−1 \ in\ equation\ (1), we\ obtain\)
\(A = 1 \ and\ B = −1\)
∴ \(\frac {1}{t(t+1)}\) = \(\frac 1t-\frac {1}{(1+t)}\)
⇒ \(∫\)\(\frac {1}{x(x^n+1)}\ dx\) = \(\frac 1n\) \(∫\)\([\frac 1t-\frac {1}{(1+t)} ]\ dx\)
= \(\frac 1n\ [log|t|-log\ |t+1|]+C\)
= \(-\frac 1n[log|x^n|-log|x^n+1|]+C\)
= \(\frac 1n\ log\ |\frac {x^n}{x^n+1}|+C\)
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,