Multiply numerator and denominator by xn−1 and put xn = t
\(\frac {1}{x(x^n+1)}\)
Multiplying numerator and denominator by xn−1 , we obtain
\(\frac {1}{x(x^n+1)}\) = \(\frac {x^{n-1}}{x^{n-1}x(x^n+1)}\) = \(\frac {x^{n-1}}{x^n(x^n+1)}\)
\(Let \ x^n = t ⇒ x^{n-1}dx = dt\)
∴ \(∫\)\(\frac {1}{x(x^n+1)}\ dx\) = \(∫\)\(\frac {x^{n-1}}{x^n(x^n+1)}\) = \(\frac 1n ∫\frac {1}{t(t+1)}dt\)
Let \(\frac {1}{t(t+1)}\) = \(\frac {A}{t}+\frac {B}{(t+1)}\)
\(1 = A(1+t)+Bt\) ...(1)
\(Substituting\ t = 0,−1 \ in\ equation\ (1), we\ obtain\)
\(A = 1 \ and\ B = −1\)
∴ \(\frac {1}{t(t+1)}\) = \(\frac 1t-\frac {1}{(1+t)}\)
⇒ \(∫\)\(\frac {1}{x(x^n+1)}\ dx\) = \(\frac 1n\) \(∫\)\([\frac 1t-\frac {1}{(1+t)} ]\ dx\)
= \(\frac 1n\ [log|t|-log\ |t+1|]+C\)
= \(-\frac 1n[log|x^n|-log|x^n+1|]+C\)
= \(\frac 1n\ log\ |\frac {x^n}{x^n+1}|+C\)
What is the Planning Process?
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,