Question:

Integrate the rational function: \(\frac {1}{x(x^n+1)}\)

Show Hint

Multiply numerator and denominator by xn−1 and put xn = t

Updated On: Oct 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\frac {1}{x(x^n+1)}\)

Multiplying numerator and denominator by xn−1 , we obtain

\(\frac {1}{x(x^n+1)}\) = \(\frac {x^{n-1}}{x^{n-1}x(x^n+1)}\) = \(\frac {x^{n-1}}{x^n(x^n+1)}\)

\(Let \ x^n = t ⇒ x^{n-1}dx = dt\)

∴ \(∫\)\(\frac {1}{x(x^n+1)}\ dx\) = \(∫\)\(\frac {x^{n-1}}{x^n(x^n+1)}\) = \(\frac 1n ∫\frac {1}{t(t+1)}dt\)

Let \(\frac {1}{t(t+1)}\) = \(\frac {A}{t}+\frac {B}{(t+1)}\)

\(1 = A(1+t)+Bt\)                                 ...(1)

\(Substituting\  t = 0,−1 \ in\  equation\  (1), we\  obtain\)

\(A = 1 \ and\  B = −1\)

∴ \(\frac {1}{t(t+1)}\) = \(\frac 1t-\frac {1}{(1+t)}\)

⇒ \(∫\)\(\frac {1}{x(x^n+1)}\ dx\) = \(\frac 1n\) \(∫\)\([\frac 1t-\frac {1}{(1+t)} ]\ dx\)

\(\frac 1n\ [log|t|-log\ |t+1|]+C\)

\(-\frac 1n[log|x^n|-log|x^n+1|]+C\)

\(\frac 1n\  log\ |\frac {x^n}{x^n+1}|+C\)

Was this answer helpful?
0
0

Concepts Used:

Integration by Partial Fractions

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,