To solve the given expression, we start by simplifying each term using the change of base formula for logarithms: \(\frac{1}{\log_b a} = \log_a b\).
So, the expression becomes:
\(\log_{100} 2 - \log_{100} 4 + \log_{100} 5 - \log_{100} 10 + \log_{100} 20 - \log_{100} 25 + \log_{100} 50\)
Combine the terms using the properties of logarithms:
\(\log_{100} \left(\frac{2 \cdot 5 \cdot 20 \cdot 50}{4 \cdot 10 \cdot 25}\right)\)
Simplify the argument of the logarithm:
\(\frac{2 \times 5 \times 20 \times 50}{4 \times 10 \times 25} = \frac{2 \times 5 \times 4 \times 5 \times 10 \times 5}{2^2 \times 5^2 \times 2 \times 5} = 2 \times 5 = 10\)
Thus, the expression simplifies to:
\(\log_{100} 10\)
Using the properties of logarithms, \(\log_{100} 10\) can be written as:
\(\frac{\log 10}{\log 100} = \frac{1}{2}\)
So, the result of the original expression is \(\frac{1}{2}\).
The correct answer is \(\frac{1}{2}\).
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :