\(∫_{-1}^1\frac {dx}{x^2+2x+5}\)= \(∫_{-1}^1\frac {dx}{(x^2+2x+1)+4}\) = \(∫_{-1}^1\frac {dx}{(x+1)^2+2^2}\)
\(Let\ x+1=t \implies dx=dt\)
\(When\ x=-1,t=0\ and\ when x=1,t=2\)
∴\(∫_{-1}^1\frac {dx}{(x+1)^2+2^2}\) = \(∫_0^2 \frac {dt}{t^2+2^2}\)
=\([\frac 12 tan^{-1}\frac t2]_0^2\)
=\(\frac 12 tan^{-1}1-\frac 12 tan^{-1}0\)
=\(\frac 12(\frac \pi4)\)
=\(\frac\pi8\)
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,