\(∫_{-1}^1\frac {dx}{x^2+2x+5}\)= \(∫_{-1}^1\frac {dx}{(x^2+2x+1)+4}\) = \(∫_{-1}^1\frac {dx}{(x+1)^2+2^2}\)
\(Let\ x+1=t \implies dx=dt\)
\(When\ x=-1,t=0\ and\ when x=1,t=2\)
∴\(∫_{-1}^1\frac {dx}{(x+1)^2+2^2}\) = \(∫_0^2 \frac {dt}{t^2+2^2}\)
=\([\frac 12 tan^{-1}\frac t2]_0^2\)
=\(\frac 12 tan^{-1}1-\frac 12 tan^{-1}0\)
=\(\frac 12(\frac \pi4)\)
=\(\frac\pi8\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
