\(∫_0^\frac{π}{2}\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx\)
Let I=\(∫_0^\frac{π}{2}\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx\)…..(1)
\(⇒I=∫_0^\frac{π}{2}\)\(\frac{\sqrt{sin(\frac{π}{2-x}})}{\sqrt{sin(\frac{π}{2-x}})+\sqrt{cos(\frac{π}{2-x}})}dx\) \(∫_0^a\) ƒ(x)dx=\(∫_0^a\)ƒ(a-x)}dx)
⇒I=\(∫_0^\frac{π}{2}\frac{\sqrt{cosx}}{\sqrt{cos}+\sqrt{sinx}}dx\).....(2)
Addind(1)and(2),we obtain
2I=\(∫_0^{π}{2}\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx\)
⇒2I=\(∫_0^{π}{2}1.dx\)
\(⇒2I=[x]_0^\frac{π}{2}\)
\(⇒2I=\frac{π}{2}\)
\(⇒I=\frac{π}{4}\)
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).