\(∫_0^\frac{π}{2}\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx\)
Let I=\(∫_0^\frac{π}{2}\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx\)…..(1)
\(⇒I=∫_0^\frac{π}{2}\)\(\frac{\sqrt{sin(\frac{π}{2-x}})}{\sqrt{sin(\frac{π}{2-x}})+\sqrt{cos(\frac{π}{2-x}})}dx\) \(∫_0^a\) ƒ(x)dx=\(∫_0^a\)ƒ(a-x)}dx)
⇒I=\(∫_0^\frac{π}{2}\frac{\sqrt{cosx}}{\sqrt{cos}+\sqrt{sinx}}dx\).....(2)
Addind(1)and(2),we obtain
2I=\(∫_0^{π}{2}\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx\)
⇒2I=\(∫_0^{π}{2}1.dx\)
\(⇒2I=[x]_0^\frac{π}{2}\)
\(⇒2I=\frac{π}{2}\)
\(⇒I=\frac{π}{4}\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
