>
Mathematics
List of top Mathematics Questions
The perimeter of a certain sector of a circle is equal to the length of the arc of the semicircle. Then the angle at the centre of the sector in radians is
KCET - 2008
KCET
Mathematics
Trigonometric Functions
The tangents drawn at the extremeties of a focal chord of the parabola
$y^2 = 16 x$
KCET - 2008
KCET
Mathematics
Conic sections
The point
$(5, - 7)$
lies outside the circle
KCET - 2008
KCET
Mathematics
Circle
The equation to the normal to the hyperbola
$\frac {x^2}{16}- \frac {y^2}{9}=1$
at
$(-4,0)$
is
KCET - 2008
KCET
Mathematics
Hyperbola
One possible condition for the three points $(a, 5), (b, a)$ and $(a^2, - b^2)$ to be collinear is
WBJEE - 2008
WBJEE
Mathematics
introduction to three dimensional geometry
If $\,^{16}C_{r} =\, ^{16}C_{r+1}$, then the value of $\, ^{r}P_{r-3}$ is
WBJEE - 2008
WBJEE
Mathematics
permutations and combinations
The projection of
$\vec{a}=3\hat{i}-\hat{j}+5\hat {k} $
on
$\vec{b}=2 \hat {i}+3 \hat j+\hat k$
is
KCET - 2008
KCET
Mathematics
Vector Algebra
If $R$ be a relation defined as $aRb iff |a - b| > 0$, then the relation is
VITEEE - 2008
VITEEE
Mathematics
Functions
If
$I =\int\frac{x^{5}}{\sqrt{1+x^{3}}}dx$
, then I is equal to
VITEEE - 2008
VITEEE
Mathematics
Methods of Integration
The solution of the differential equation $\frac{dy}{dx} = \frac{xy + y}{xy + x}$ is
BITSAT - 2008
BITSAT
Mathematics
Differential equations
The ten's digit in $1! + 4!+ 7! + 10!+12! + 13! + 15! +16! + 17!$ is divisible by
KCET - 2008
KCET
Mathematics
Binomial theorem
The characteristic roots of the matrix $\begin{bmatrix} {1}&{0} &{0}\\ {2}&{3}& {0} \\ {4}&{5}&{6}\\ \end{bmatrix} $ are
KCET - 2008
KCET
Mathematics
Matrices
The probability that number selected at random from the number
$1, 2, 3, 4, 5, 6, 7, 8, ..., 100$
is a prime, is
J & K CET - 2008
J & K CET
Mathematics
Probability
The value of
$\tan^{-1} \frac{\sqrt{2+\sqrt{3}} -\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3} } +\sqrt{2-\sqrt{3}}} $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
If
$[x]$
denotes the greatest integer function, then
$\int\limits_{1}^{4} \left(\left[x\right] -1\right)\left(\left[x\right] -2\right)\left(\left[x\right] -3\right)\left(\left[x\right] -4\right)dx = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If
$\log_2 \: \sin x - \log_2 \cos x -\log_2(1 - \tan^2x) = - 1$
, then
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Trigonometric Functions
If
$u = f(x^2) , v = g(x^3) , f'(x) = \sin x $
and
$g'(x) = \cos x,$
then
$ \frac{du}{dv} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$x= 3 \cos t - 2 \cos^{3} t , y = 3\sin t - 2 \sin^{3} t ,$
then
$ \frac{d^{2}y}{dx^{2}} t = \frac{\pi}{6}$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$\tan^{-1} \left(\frac{x}{y}\right) + \log \sqrt{x^{2} +y^{2}} = 0 $
, then
$\frac{dx}{dy} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
Let
$f\left(x\right) = \frac{\log\left(1+ex\right)-\log\left(1-x\right)}{x} , x\ne0 $
. Then
$f$
is continuous at
$x = 0$
if
$f(0)$
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
Rain is falling vertically downwards with a velocity of
$4\, km / h$
. A man walks in the rain with a velocity of
$3 \,km / h$
. The raindrops will fall on the man with a velocity of
BHU UET - 2008
BHU UET
Mathematics
Addition of Vectors
The value of $\cos \frac{\pi}{15}\, \cos \frac{2\pi}{15}\, \cos \frac{4\pi}{15}\, \cos \frac{8\pi}{15} $ is
WBJEE - 2008
WBJEE
Mathematics
Trigonometric Functions
The order and degree of the following differential equation $\left[1+\left(\frac{dy}{dx}\right)^{2}\right]^{5/2} = \frac{d^{3}y}{dx^{3}}$ are respectively
WBJEE - 2008
WBJEE
Mathematics
Differential equations
The differential equation of the family of circles passing through the fixed points $(a, 0)$ and $(-a, 0)$ is
WBJEE - 2008
WBJEE
Mathematics
Differential equations
The value of the integral $\int\limits_{-a}^{a} \frac{xe^{x^2}}{1+x^{2}} dx $ is
WBJEE - 2008
WBJEE
Mathematics
Integrals of Some Particular Functions
Prev
1
...
805
806
807
808
809
...
1066
Next