Consider the Linear Programming Problem P: \[ \text{Maximize } c_1x_1 + c_2x_2 \] subject to: \[ a_{11}x_1 + a_{12}x_2 \leq b_1, \] \[ a_{21}x_1 + a_{22}x_2 \leq b_2, \] \[ a_{31}x_1 + a_{32}x_2 \leq b_3, \] \[ x_1 \geq 0, \, x_2 \geq 0, \] where \(a_{ij}, b_i, c_j\) are real numbers (i = 1, 2, 3; j = 1, 2). Let \[ \begin{bmatrix} p \\ q \end{bmatrix} \] be a feasible solution of P such that \( p c_1 + q c_2 = 6 \), and let all feasible solutions \[ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \] of P satisfy \( -5 \leq c_1x_1 + c_2x_2 \leq 12 \). Then, which one of the following statements is NOT true?