Let \( l^2 = \{(x_1, x_2, x_3, \dots) : x_n \in \mathbb{R} \text{ for all } n \in \mathbb{N} \text{ and } \sum_{n=1}^\infty x_n^2 < \infty\} \).
For a sequence \( (x_1, x_2, x_3, \dots) \in l^2 \), define \( \|(x_1, x_2, x_3, \dots)\|_2 = \left( \sum_{n=1}^\infty x_n^2 \right)^{1/2} \).
Consider the subspace \( M = \{(x_1, x_2, x_3, \dots) \in l^2 : \sum_{n=1}^\infty \frac{x_n}{4^n} = 0\} \).
Let \( M^\perp \) denote the orthogonal complement of \( M \) in the Hilbert space \( (l^2, \|.\|_2) \).
Consider \( \left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right) \in l^2 \).
If the orthogonal projection of \( \left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right) \) onto \( M^\perp \) is given by \( \alpha \left(\frac{1}{4}, \frac{1}{4^2}, \frac{1}{4^3}, \dots\right) \) for some \( \alpha \in \mathbb{R} \), then \( \alpha \) equals ..................